ロジスティック回帰におけるグループLasso

$\beta_j,\gamma_j\in R^{K}$ ($j=1,\ldots,p$)に関して、
$$(\beta_j-\gamma_j)\{\sum_{i=1}^Nx_{i,j}x_{i,j’}W_i\}(\beta_{j’}-\gamma_{j’})^T\leq t\sum_{i=1}^Nx_{i,j}x_{i,j’}(\beta_j-\gamma_j)(\beta_{j’}-\gamma_{j’})^T$$
とできます。$W_i$は非負定値ではありませんので、$tI -W_i$, $i=1,\ldots,N$が非負定値となる$t$の中で最小のものを求めます。したがって、(3.16)の場合と同様、第3項を凸な上界に置き換えることができます。必ずしも、
$$\sum_{i=1}^Nx_{i,j}x_{i,j’}W_i\leq L I$$
(L: Lipschitz定数)というように、最大固有値で置き換えなくてもよいということです(この方が厳密な上界になります)。

これに近接勾配法を適用します。