行列分解の更新式

(6.11)の劣微分をとって、(6.12)になります。そして、(6.13)を繰り返し適用すると、(6.12)の等号が成立するようになります。$M=\sum_{i=1}^r d_i{u}_i{v}_i$ ($r$は$M$の階数)と書くとき、$[\Omega,Z,M]$の$n$個の特異値で$\lambda$以下のものは、$M$の$r$個の特異ベクトルに対応する場合、しない場合のいずれでも、$S_\lambda(\cdot)$の操作によって0になります。

前者の場合、$S_\lambda([\Omega,Z,M])$の対応する特異値が0になり、$M=S_\lambda([\Omega,Z,M])$であれば、階数$r$が$M$と一致せず、$M$の階数を減らして、(6.13)の更新をさらに続けます。後者の場合は、$M$の特異値とは直交する特異ベクトルで特異値が$\lambda$以下のもの($\sum_{k=r+1}^nd_k\tilde{u}_k\tilde{v}_k$, $d_k\leq \lambda$)が、(6.13)の更新を行っても、$[\Omega,Z,M]$に含まれたままになります。

したがって、(6.12)の最初の項が$M- [\Omega,Z,M]$とかけ、(6.13)が平衡状態に達した場合、(6.12)全体が0になります。