第3章 リサンプリング(問題32~39)
35
n <- 1000
p <- 10
x <- matrix(rnorm(n * p), nrow = n, ncol = p)
x <- cbind(rep(1, n), x)
beta <- rnorm(p + 1)
y <- x %*% beta + rnorm(n) * 0.2
# 通常のクロスバリデーションによる方法
cv.linear <- function(X, y, k) {
n <- length(y)
m <- n / k
S <- 0
for (j in 1:k) {
test <- ((j - 1) * m + 1):(j * m)
beta <- ## 空欄(1) ##
e <- y[test] - X[test, ] %*% beta
S <- S + drop(t(e) %*% e)
}
return(S/n)
}
# 公式を用いた方法
cv.fast <- function(X, y, k) {
n <- length(y)
m <- n / k
H <- X %*% solve(t(X) %*% X) %*% t(X)
I <- diag(rep(1, n))
e <- (I - H) %*% y
I <- diag(rep(1, m))
sum=0
for (j in 1:k) {
test <- ((j - 1) * m + 1):(j * m)
sum <- sum + ## 空欄(2) ##
}
return(sum / n)
}
plot(0, 0, xlab = "k", ylab = "実行時間",
xlim = c(2, n), ylim = c(0, 0.5), type = "n")
U <- NULL
V <- NULL
for (k in 10:n) {
if (n %% k == 0) {
t <- proc.time()[3]
cv.fast(x, y, k)
U <- c(U, k)
V <- c(V, (proc.time()[3] - t))
}
}
## 空欄 数行 ##
legend("topleft", legend = c("cv.linear", "cv.fast"),
col = c("red", "blue"), lty = 1)
36
# データ生成
n <- 100
p <- 5
plot(0, 0, xlab = "k", ylab = "CVの値",
xlim = c(2, n), ylim = c(0.3, 1.5), type = "n")
for (j in 2:11) {
X <- matrix(rnorm(n * p), ncol = p)
X <- cbind(1, X)
beta <- rnorm(p + 1)
eps <- rnorm(n)
y <- X %*% beta + eps
U <- NULL
V <- NULL
for (k in 2:n) {
if (n %% k == 0) {
## 空欄 ##
}
}
lines(U, V, col = j)
}
37
df <- iris
df <- df[sample(1:150, 150, replace = FALSE), ]
n <- nrow(df)
U <- NULL
V <- NULL
for (k in 1:10) {
top.seq <- 1 + seq(0, 135, 10)
S <- 0
for (top in top.seq) {
index <- ## 空欄(1) ##
knn.ans <- knn(df[-index, 1:4], df[-index, 5], df[index, 1:4], k)
ans <- ## 空欄(2) ##
S <- S + sum(knn.ans != ans)
}
S <- S / n
U <- c(U, k)
V <- c(V, S)
}
plot(0, 0, type = "n", xlab = "k", ylab = "誤り率",
xlim = c(1, 10), ylim = c(0, 0.1), main = "cvによる誤り率の評価")
lines(U, V, col = "red")
38
func.1 <- function(data, index) {
X <- data$X[index]
Y <- data$Y[index]
return((var(Y) - var(X)) / (var(X) + var(Y) - 2 * cov(X, Y)))
}
bt <- function(df, func, r) {
m <- nrow(df)
org <- ## 空欄(1) ##
u <- array(dim = r)
for (j in 1:r) {
index <- sample(## 空欄(2) ##)
u[j] <- func.1(df, index)
}
return(list(original = org, bias = mean(u) - org, stderr = sd(u)))
}
library(ISLR)
bt(Portfolio, func.1, 1000) # 実行例
39
df <- read.table("crime.txt")
for (j in 1:3) {
func.2 <- function(data, index) {
return(coef(lm(V1 ~ V3 + V4,
data = ## 空欄(1) ##, subset = ## 空欄(2) ##))[j])
}
print(bt(df, func.2, 1000))
}
summary(lm(V1 ~ V3 + V4, data = df))