Solutions for ”Statistical Machine Learning with R: 100 Problems”
(Mathematical Part)

Joe Suzuki

For the program, please refer to the solution outline (R program).html.

Chapter 2: Linear Regression
L 8= 300 (g — o — Pri)®

(a) Let & := Zf\;l T, J =~ Zfil y;, then,
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(b) From Sy =y — B,
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Since z1,--- ,xnx are not all equal, i.e., Zf;l (x; — 56)2 #0,
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2. The slope of I (31) is
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and the intercept (3p) is determined by

Bo =9 — Pz
Considering z; — T — x;, y; — g +— y; (i =1,..., N), the slope of I, By, is
N
Bl _ Zi:1 TiYi

N
Dic 9512

At this time, since Z = j = 0, the intercept of I is 0 (passes through the origin). Once §; is obtained, the
intercept Sy of I can be obtained using ; and from (a’),

Bo=17— Pz
(a) For any z € R™,
A2=B'Bz=0=2"B'Bz=0= (Bz) ' B:=0= ||Bz||>’=0= Bz =0
Bz=0=B"Bz=0= A2=0

Thus,
Az=0& Bz=0

(b) From (a), the kernels of linear mappings by A and B are equal. Also, by Proposition 4 (dimension theorem),
the sum of the dimensions of the image and kernel of both A and B is m. Therefore, the dimensions of the
images of A and B are equal, and by Proposition 4, the ranks of A and B are also equal.

5. Let X € RV*(®+1) be a matrix where the first column is all ones.
(a) When N < p+ 1, by Proposition 3,
rank(X " X) < rank(X) = min{N,p+1} =N < p+ 1.

Note that X TX e R®TDx(@+D) g a square matrix. By Proposition 1, X' X does not have an inverse
matrix.

(b) When N > p+ 1 and there are two identical columns in X, by Proposition 3,
rank(X ' X) < rank(X) <p+1
Therefore, for the same reason as (a), X ' X does not have an inverse matrix.

6. (a) For j =0,1,...,p,
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The partial derivative with respect to 8; is
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== Zwlvjyl + Z €T ]ﬁj + Ty, sz kﬁk
k#j
- Zl‘hjy’t + Z sz j L3, k/Bk

k=0 i=1

On the other hand, the j-th component of X Ty is Zf\il x; Vi, the (4, k) component of XX is Zi\;l Ti i ik
and the j-th component of X ' Xf is g:o Zfil %;,;%i kB Therefore, the j-th component of —XTy+

XTXpis
7ZI1]QZ+ZZ‘T1]$Z kﬂk

k=0 i=1

which matches 2 W’ hence the statement is proved.

(b) From the calculation in (a), 3 € RP*! such that B—L = 0 for all j satisfies
—X"y+X"XB=0

Assuming that X T X has an inverse matrix, the desired B is

-1

B=(XTX) X'y

7. (a) Given the condition y = X + €, substituting this into Proposition 11, we get

—1
XTe

B=(XTX) " XTy=(X"X) ' XT(XB+e)= (XTX) XTXB+ (XTX) ' XTe=8+(X"X)
(b) Sincee ~ N (0,0%I), the mean of ¢ € RY is 0, so even when multiplied by the constant matrix (X ' X) IXT,
the mean of (X—'—X)_1 X Te is also 0. Therefore, from (a), IE[B] = (3, hence the statement is proved.

(¢) From (a),

E[B-B)(B-AT]-E [(XTX)I XTe{(xTx) "' x T} [(XTX) 7 XTeeTX (X)) ]
1

1

XTX) XX (XTX) =02 (xTX)

—(XTX) ' XTE[eeT] X (XTX) ™
Here, we used the covariance matrix of ¢, E [EET} =o?].

8. Let H=X (XTX) ' XT € RNV and § = XJ, then

(a) H2= X (XTX) "' X X (XTX)"'XT =X (XTX)"' X7 = H implies that H2 = H.



10.

HX = X (XTX)™' XTX = X implies that HX = X.

y Proposition 11, § = XB =X (XTX)_1 X Ty = Hy implies that § = Hy.

g=y—Hy=(I—-H)(XB+e)=(X—HX)B+(I—-H)e =(X—-X)B+(I—H)e = (I — H)e implies that

9 = (I — H)e. The first equality uses (d), the next equality uses (1.12), and the penultimate equality
uses (c).

O ly—al>P=@-9"y—9) ={I-He} I-He=e"(I-H) (I -He=c'(I-H)?=c'(I-H)e

implies that ||y — §||> = " (I — H)e. Here, the second equality uses (e), the penultimate equality uses the

linearity of transposition and

B
Y
Y

T

H = {X(X"x)"'xT} =x {(XTx)‘l}TXT =X {(XTX)T}_lXT =X (X'X)'XT=H

The final transformation relies on (b).
(a) Let H := X(X"X)"'XT. By Proposition 3 and rank(X) =p + 1,
rank(H) < min{rank(X (X " X)), rank(X ")} < rank(X ") = rank(X) =p +1
Meanwhile, from (c) in the previous problem, HX = X implies
rank(HX) =rank(X)=p+1
Thus,
rank(H X ) < min{rank(H ), rank(X)} < rank(H)

Therefore, rank(H) > p + 1. Consequently, rank(H) = p + 1, and by Proposition 4, the dimension of the
image of H is p+ 1.

(b) From (c) in the previous problem: HX = X, the column vectors of X are eigenvectors of H with eigenvalue
1. Moreover, since rank(X) = p + 1, the column vectors of X are linearly independent. Therefore, the
column vectors of X form a basis for the eigenspace of H with eigenvalue 1, and its dimension is p+ 1. Here,
the eigenspace of H with eigenvalue 1 is the kernel of H. Thus, by Proposition 4 and rank(H) = p+ 1, the
dimension of the kernel is NV — p — 1, so the eigenspace of H with eigenvalue 0 is N — p — 1 dimensions.

(c) For any x € RPHL,

(I-Hx=0&Hrx=x

Thus, the eigenspace of H with eigenvalue 1 and the eigenspace of I — H with eigenvalue 0 are equal, so
the dimension of the eigenspace of I — H with eigenvalue 0 is p 4+ 1. Furthermore,

I-Hzx=xs Hx=0

Thus, the eigenspace of H with eigenvalue 0 and the eigenspace of I — H with eigenvalue 1 are equal, so
the dimension of the eigenspace of I — H with eigenvalue 1is N —p — 1.

(a) Assume e ~ N (0,021). Let v = Pe, thene = P~lv = PTo,

e'(I-He=v PI-H)P"v



Here, P(I — H)PT becomes a diagonal matrix with N eigenvalues as components. In particular, from the
previous problem, I — H has N — p — 1 eigenvalues of 1 and p + 1 eigenvalues of 0. Therefore,

N—p—1
v PI-H)PTv= > v}
1=1

(b) E[vvT] = PE[eeT|PT = Po?IPT = 02IPPT = ¢2]

(c) Let V = [vy,...,un], where v; ~ N (07 02) fori=1,...,N. Then, Z; = % are mutually independent and
each follows N(0,1). Therefore,
N—p—1

2
Vi 2
Z —3 Y XN-p-1
i1 7
From (a),
RSS

2
NX o
0_2 N—p—1

11. (a)
E[(3-)y—9)T] =E[(XTX) " XTec (1 - )]
= (XTX) X [T (- H) = o {(XTX) T XT - (XTX) X THY
=o? {(XTX)‘1 XTo(xTx) ' xTx (xTx) XT} ~0
(b) Fori=0,1,---,p, (Bz - ﬁi) / (V/Bio) is a function of — 3, and RSS is a function of y—§. Since f— 3 and

y — ¢ both follow a normal distribution, and from (a), their covariance matrix is 0, the two are independent.
Therefore, the statement is proved.

(c) Fori=0,1,---,p,

Bi_ﬁi:Bi_ﬁi: Bi — Bi _ Bi — Bi / RSS/o?
se(p) VB ESVE (B VEe (N op ]

Since B ~ N (5,02 (XTX)A),

Bi — B;
~ N(0,1
Bo (0,1)
Combining with 10.(c),
Bi—bBi
— N Y IN—p-1
se ()
N
(d) Let >3, =>4
1 I
X = 5
1 N



For this,

1 - 1 N >ow; 1 T
XX = o = it ) =N

Therefore,

XTX 1:—— N AN - - N i L
GeX) N % i — (2)? ( -z 1 ) S, (@ — z)? ( —z 1 )

Thus, the statement is proved.

14. (a) From the equality HX = X shown in 8.(c), since the first column vector of X has all its elements equal to

1, each column vector of W, with all elements equal to 1/N, becomes an eigenvector of H with eigenvalue
1. Therefore, HW = W holds. Furthermore,

(I-H)(H-W)=H-W-H*+HW=H-W -H+W =0

Here, 8.(a) H? = H was used.

ESS =g —gl* = [[Hy = Wy|* = [[(H = W)y|?,
TSS =|ly—gl* = Iy = Wyl* = (I - W)y|?
Thus, the statement is proved.

()
ESS = |(H = W)yll* = [(H = W)XB + (H — W)el|?

To show the independence of RSS = ||(I — H)e|?, it suffices to show the independence of (I — H)e and
(H — W)e, which both follow a normal distribution. Their covariance matrices are,

E[(I - H)e{(H - W)e} | =E[(I — H)ee " (H —W)]
=(I-HE[e"|(H-W)=0>I-H)(H-W)=0

Thus, the independence in the statement is proved.
(d) Using (a),
(1 = W)yl* =|

Thus, the statement is proved.

15. (a) For the i-th component g; — y; of § — ¥,

9i — i = Bo + Brzi — Bo — p17 = By (s — T)



Thus,

§—9=pi(z—x)
Here, Z € RY is a column vector with all elements equal to % Zi\;l xi.
(b) Using (a),
ESS g -gl* _ Bl - |
Tss ly—gl*  lly—gl?

R? =

(¢) From (b),

2
R i@ D i—g) | X (- )’
5 (@i = 2)° > (i —9)°
Meanwhile, the sample correlation coefficient 7 is

iz — )(yz y)
Jz (20~ 2%, (i — 9)°

Therefore,

o AT D) 9P :{zxm@(yig)}b(mf)?
NI SN HEEL IS
This is equal to R2.

17. (a) Note that z, is a constant.

Considering also 7.(c),

\% [x*,é’} =F {{m*(ﬁ — ﬁ)}Tx*(B — 6)] = x*V(B)xI = o?z, (XTX)_1 J:;r

CU*B — .0 o x*B — T3 o Z*B — x.f3
3 - - RSS .
SE (xﬂ) 0\/x* (XTX) ol N,V (XTx)™"
RSS

o2

x*ﬁ
N-p-1
\/RSS /—XTX T P

Since f ~ N (,6’,02 (XTX)_l), the numerator ~ N(0,1). On the other hand, by 11.(b), RSS/o? ~

X?prfl’ and since these two are also shown to be independent,

w.Boeb



()

*

2.8 — s B .53 — ys RSS/c?
-1 - —1 / N—p—l
6\/1+x* (XTX) a2t &\/1+x* (XTX) 2]

Since the numerator ~ N(0,1) and RSS/o? ~ X?V_p_l, we obtain

\% {x*ﬁfy*} =gz, (XTX)flx;r + 02 = o2 {1+x* (XTX)fle}

Therefore,

Tuf3 — Y "
~UIN—-—p-—1
(3\/1 +o, (XTX) a2
Chapter 3: Classification
19. F = !
- For fy) = T =y
1) = L = ! =P =-1
F(=1)= 1+ e—(—DBo+2TB) ~— 1 4 (Bo+aTB) — ¥ =-1)
1 1 eﬁoerTﬁ
F1) = 1+ e LBotaTB) 14 e (BotalB)  hotalB 41 Py =1)

Thus, the proposition is shown.

20. F 1 , Be—(BotaB)
. Fo - - _
r f(x) 1+ e—(Bo+zB)’ f (1') {1—|—€_('Bo+mﬁ)}2
f”(aj) _ _52(3—(50+$5) {1 + e—(Bo+r5)} + 2526—2(50+m5) _ /326—(130-4-2?5) {_1 + e—(50+m5)}

{1 +e—(Bo+rﬁ)}3 {1 + e (Botes)}?

Since 8 > 0, for any z € R, f/(x) > 0, x < —Bp/B has f"(x) > 0, and = > —fy/f has f"(x) < 0. Therefore,
f(z) is monotonically increasing for any = € R, convex down for x < —fy/8, and convex up for x > —fSy/p.
The results of the implementation of the proposition are shown in the outline (R program Chapter 2). This is a
graph of y = f(x) where 8y = 0 and 8 is 0,0.2,0.5, 1,2, 10. It shows that as 8 increases, y changes more sharply

around z = 0, transitioning from y = —1 to (z,y) = (0,0) to y = 1.

61 Tq1
21. Given 5y € R, 5 = ER, (x;,y;) e RP x {-1,1},i=1,---N, z; = ,
Bp Zip
1 Jj? 1 T11 Tip
X = . . = : . .. : c RNX(P“’U
1 .%'11\} 1 N1 TNp



(with z;0 = 0 assumed),

N
1(Bo, B) = Zlog{ue—yi(mxﬂ } Zlog

1+ exp { Yi Z (xmﬁk)H

i=1 =1
Then, for j =0,1,---
ol (Bo, B z”: (i) exp {=yi Sho (@aBe)} _ N~ wivi
a8 —~ l+exp{-y Soh_o (@inbBe)} 1+, ij
P
holds. Here, for i =1,2,--- , N, v; = exp {yZ Z (zikﬂk)} Thus,
k=0
91(Bo,B)
9Bo
VI (Bo, B) = : € RPH!
0l(Bo.B)
9Bp
Yiv1
1+4+v1
can be written as u = : so that VI (B, 8) = —X Tu Additionally, for i = 1,2,--- ,j =0,1,--- ,p,
YNUN
1+vpn
3vi -
9B, = TYiTi Ui

holds, so for 5,k =0,1,--- ,p,

PUBLE) 0 N g
0B Br 0P = 1+ g

n

__Zx,,i Yivi
VOB Lt

- - s (=yizavi) (14 vi) = (yivi) (~yiwipvs)
- Z ? (14 v:)

_ Z —TikV;) 1+vl)+xikv§
” (1—|—v1)

— ZIIkL
- ijLi 3
i—1 (1 +w;)

Here, since y; € {—1,1}, we have y? = 1. At this point, let W be an N-dimensional diagonal matrix with (i,1)
element v;/ (1 + v;)?,

(1_:7;1)2 0 0
W = 0 (14?32)2 : c RVXN
: . . 0
0 0 Tron?



23.

25.

Then, the (i,k) element (i =1,--- ,N,k=0,1,--- ,p) of WX € RN*(+1) j5
v
(1 + Ui)2
Therefore, the (j, k) element (j,k =0,1,---,p) of XTWX € Re+Dx(p+1) jg

i i a2l )
I D

Thus, the desired second derivative VQZ (60, B) is
V2160, B) = XTWX

Lik

Here, for any i = 1,--- , N, since v; > 0, v;/ (1 + vi)2 > 0, we can define U € RV*VN with each element being
the square root of each element of W,

VA= A 0
U — 0 Ymer
: - : 0
0 o 0 (1+11;VN)2

Then, since W = UTU, we have V21 (3y,8) = X7 (UTU) X = (UX)TUX. Thus, using Proposition 10.1,
21 (B, B) is a non-negative definite matrix, and therefore I (3o, 3) is convex.

Rewriting the update rule using Boid, Bnew, t, W, X,

ﬁnew — ﬂold + (XTWX)71

X7y

then,

—1 —1

XTu = (XTWX) " XTWXBoa + (XTWX) ' XTu
= (XTWX)_1 XT (WX Bowa + u)
— (XTWX) " XTW (X Boa + W)

Thus, letting z = X Boia + W lu, the update rule is

Buew — (XTWX) ' XTW 2

Bola + (XTWX)

1

D1 +exp{-y; (Bo + T Dl

forany i =1,--- , N, then for any fixed 3y, 5, for 1nstance by substituting £y < 208, 8 < 28, the exponent part
n (2.1) can be made smaller. Therefore, the maximum value

When considering the maximization of the likelihood H if y; ([30 + BTxi) > 0 holds

N 1

max
Bo.B -1 1 +exp{—yi (Bo + 7 z:)}

does not exist, and under this assumption, the parameters for logistic regression cannot be estimated by maximum
likelihood.

10



26. The accuracy rate was (39 + 42)/100 = 0.81.
27.

S, =0 eRP g fr(2) _ m fi(x) }
kel { eR? | ZJK=1 ;i f(x) Zszl i fi(x)
1

$10) = o {3 mT s - m)

(a) Assuming 7y = 7,

i) mfi(x)

K mifie) SN ()
= fu(z) = fi(x)

= Wﬂi o o {—; (@ — )" 2t (2 — ,Uk)}
= (277)37 o P {—; (@ =) S (@ - m)}

det Xp, 1 Ty _
\/;Zl eXp { 2 { (x—pr) 25 (@ —pe) + (2 — )" X (2 Hl)}

Taking the logarithm of both sides of the above equation,

detZk T —— T ——
8 Jorys =—(@x—pr) S (@ — ) + (@ — ) 57 (2 — )

Thus, Sk, is given in the form as required.
(b) Assuming ¥ =%, =X,

i) mf@)

Zf:l 7 f;(x) ZJK:1 7 f;(@)

= m fr(z) = ™ fi(2)

1 1
<= T} exp {—2 (x— )" 7 (& — ,uk)} = T exp {—2 (z—m)" 27z — )

— Tk zexp{; {—(:C-M)Tz_l (x — ) + (x—llk)TE_l (x—ﬂk)}}

m
Taking the logarithm of both sides of the above equation,
tog ™ = 2 {~ @ =)= (@ - )+ rg) = (o )
Here, since ¥ is a covariance matrix, it is a symmetric matrix,
SNl =T () =T
— (= h)'sT=1
—EY)'s=1

11



Thus, noting that £~! (denoted as (s;;)) is also a symmetric matrix,

5
0
|
I

% Z Sij {(zi — pwi) (@ — paeg) — (i — ) (5 — puy)}

1
5 E sij i (=png + pg) + 25 (—prs + pas) + Pribieg — Haif
%7

1
5 Z Sij {20 (—puj + pug) + (Pitinj — paitus)}
4,7

_ 1 _
= (u — ) Sz + g(ﬂk — )" 27 (e — )

Therefore,

_ 1 _ T
(e = )" 570 = 5 (e — )" 8 1(uk—uz)+log;';:0

The desired a, b are

a= {(ﬂk — )" 2’1}T =37 (g — )

1

— 7T
b= =5 (e — )" =7 (o — ) +log =
)

(c) For the plane equation obtained in (b) where ¥y = 3; and 7y, = m,

(e — )" X7 e — L (i — /I{Z)T S (e — ) =0
o e )T B (o= ) =0

Thus, the boundary is the plane = = (ur — ) /2.

Chapter 4: Resampling
32. It is sufficient to show

(A+UCV) (A =AU (C vaTo) T vaT) =1

(A+UCY) (A7 - A7 U (€7 4 VATD) AT
—T+UCVA™ —U(C + VA 'WU) ' VA —UCVA U (C' + VA~'U) VA
—T+UCVA™ —UC-C ' (CT 4+ VA 'U) ' VA —UC- VAU (C' +VAU) VA
—[+UCVA™' —UC- (CT'+VATU) - (C' + VA,lU)_l VAL
=I+UCVA ' —UCVA =T

Thus, the proposition is shown.

12



33. (a) For

T1
X = : e RVx(p+1)
TN
N
XTx = ZIZI, = Z.Z’,Lsz + Zszxz = XEXs+ XX g
i=1 i€S ¢S

Noting the equation shown in 32,
A=XTX, U=XL, V=-Xg, C=1
we have,
_ _ _ _ -1 _
{(XTX = XEXs} = (XTX) 7 (XTX) T XE {1 X (xTx) T xE X (X7X)
-1

(XTeX ) " = (XTX) 7+ (XTX) " XL (I - Hs) ™' Xg (XTX)

where Hg = Xg (XTX)f1 Xg. Thus, the proposition is shown.

(b)

=p- (XTX)ingyS + (XTX)AXLZ (I - Hg)™" (XSB - Hsys)
=B (XTX)_ng (I-Hs)™" {(I — Hs)ys — XSBJFHS?JS}

= B— (x7X) "' XT (1 - Hs) " (us - XsB)

=p— (XTX) " XE (1 Hs) " (ys — )

=B (XTX) 7 XE (I - He) 'es

Thus, the proposition is shown.
34.
ys — XsP_s =ys — Xs {5 - (XTXY1 XE(I-Hg)™! 65}
= ys — XeB+ Xs (XTX) " XL (I - Hs) 'es
=es+Hg (I —Hs) "es
=(I—Hs)(I—Hs) "es+Hs (I — Hs) "es
=(I-Hs) "es

Therefore, the sum of squared errors for all CV groups can be written as,
.2 3 2
3| RN U 5/ RPREN
S S

Thus, the proposition is shown.

13



35. The sum of squared errors matches, and the execution time of cv.fast is shorter.

39. The first three types of data are. For j = 1,2, 3, the intercept and two slope estimates when the first variable
is regressed on the third and fourth variables are obtained, and the standard deviations of those estimates are
evaluated.

Chapter 5 Information Criteria

40. (a)
max | = max, Zlogf yi | =i, )
= B, Nl {pmmenr) -
B _% log (QWUQ) - 521]&21 ii {W}
= —g log (2#02) 552 BERP+1 n |y — Xg|?

Thus, when o2 > 0 is known, maximizing [ with respect to 3 is equivalent to minimizing ||y — X 3||%.

(b) Differentiating | with respect to o2 gives,

ol N 1

2 4= gy — XABl?
507 = 207 * 5 a1~ X

ol
Setting 202 = 0 gives the maximum likelihood estimate &2 as
o

1 A
72 = —|ly — XB|?
iy = X5l

where 3 = (XTX) ! XTy.
(c¢) Using the fact that for any = > 0, logx < z — 1, for any probability density functions f and g on R,

[ snesfSar =~ [ st 3
z/mﬂm{ﬁg bio = [ fgte) = flo)dds = ~1- 1) =0

Finally, using the fact that f and g are probability density functions, we have shown the desired inequality.

14



41. (a)

N
R AENOES | ARG
i=1
LAY L P ?
:( Tra?) exp —T‘Q; yi_;xijﬂj
2
oflep) (1 \V 1 (s S Loy
0B _(‘/27“,2) M(;Qxik yi_jz::ll'ijﬁj exp —T‘Q; yz—; ij P

1 N 1 N P 1 N P ?
\/W) 52 z; Tik | Yi — 231 i B; exp Ry Z Yi — Z 553,
i= j=

i=1 j=1
N . P
_fN(y | x76)z g (yl - meﬁ])
i=1 j=1
ol 0
e —;aiﬁklogf(yi | x4, B)

i=1 j=1
Ay I
:Z : ( lejﬂ]) }
i=1
_9fN(y | . 8)/08
Ny |z, B)
Therefore,
N AUIEN.)

Ny |z, B)

(b) Since fN(y |z, B) is a joint probability density function, we have

/ Ny |z B)dy =

Assuming that differentiation with respect to § and integration with respect to y can be interchanged,

15



differentiating both sides with respect to g gives,

/ VN (y | 2, B)dy = 0

My \xﬁ)
fN(ny,ﬁ)

:/VfN(y | 2, B)dy = 0

EVI] = My |z, B)dy

(d) Differentiating both sides of the equation obtained in (c) with respect to § gives,
0=V(EIVI) =V [(V01¥(y | 2. B)dy
=/V{(v1)fN<y |, 8)} dy
= [0 ¥ 2.8y + [(TO (| B)dy
B[V + [(V? Yy |2, 5)dy
=E [V2I] + E [(V])?]

Thus, the desired result is shown. Therefore, from (d),

g [(VI)?] = —%E (V2]

is satisfied.
42. (a) For an unbiased estimator B of 8,
JESREE R

is satisfied, so differentiating both sides with respect to 3; gives,

o N
/&aﬂjf y |z, B)dy

— / B (y | =, B)(VI)dy

:{o (i # J)

Expressing this in the form of a covariance matrix,

g [5vo] = [ 5 {W}TfN(y |2, 6)dy =

Therefore, £ {(B - B)(VZ)T} = I. Finally, using the fact that E[VI] =

16



43.

44.

(b) The desired covariance matrix is,

0 NJ 0 I I NJ||-g) ' I

These are non-negative definite matrices, so for any z,y € RP*H!, let z = [z,y]7,

VO NI 0 e—a {vi) - y e 2 0

[V(B)(NJ)I 0 }:[I (NJ)lHV(B) I H 4 0}

This is satisfied even when y = 0, so V() — (NJ)~! is non-negative definite. Thus, the validity of the
Cramer-Rao inequality is shown.

(a) Taking the trace of both sides of E [(B — ﬁ)(Vl)T} = [ € RHOx+1),

p+1=u{E[B-pV)||=u{B|(VW)B-p)|}=E|B-8T (V)]
Thus, the desired result is shown.
(b)
E [HX (X7x)" Vlm = o { B [(v)T (xTx) 7' XTx (x7x) 7 (V)] }

— tr {E [(VZ)T (x7x)" (Vl)] } — tr {E [(XT)()‘1 (vz)(W)T] }
+1

= uw{(x7x) " B[(v)(v)7]} = tr{(XTX)_l ;XTX} L i) = et

{ [ 3-8 Tvz}} - {E [(B ~B)TXTX (xTx)" vz] }2

s“

Using Schwartz’s inequality from the second to the third line. Therefore,

(3-8 x| } {HX (XTX)_1V1H2] —EB[IX(3- || B MX (XTX)_IVlm

w+17? < B [IX(G - B
E [HX(ﬁ - A)IP] = (p+1)0?

1
log (1| 7,7) = — 5 log 270" — 5 (u — a7’

{(u—=B) —x(y— B} =(u—2B)> = 2(y — B)" " (u— zp)
+(v=B)"a"x(y - B)

17



Thus,

2
1 1
+ (=B 2" (=) — 55 (v =) aTx(y - B)
Taking the sum over (z,u) = (21, 21), (xn,2N), we get

N
— > log f (2 | ®i,7)

i=1

N
N , 1
:EIOgQﬂ'U +ﬁ;(

Iz -

1 & 1 &

—z;8)? —227 B al (2 — x:B) + 2—2 z(y—B)
N
:Elog27m2+f

1

XBI? ~ — (v = BT X7 (s — XB) +
Thus, the desired result is shown.

(b) Given that E[z — X] =0,

oo (7= XXy~ )

Bz - XBI7) - Ez

i=1

N

Zlogf(zi | 3%’7)]
N 1

= 510g2ﬂ'02 + 2 NU + 7||X(’Y A)I”

N 2 2
=5 log 2wo“e + 202 1X (v =Bl
(¢) The value of (4.8) is given by

N (oo}
3 [ ttow s e ) £ L )
i=17 ">

The sum of the KL information is
[ (2], B d _E,

Z/ fz|xz,ﬁlog O

Taking v = /3, obtained by the least squares method

Zlog (<] ”"“5)] Lxe -8

(z | xi,7) 202

E[IX(3- I = B |a{(B- "X X(3- 9]

Thus, the average minimum value of (b) is

=tr {V[B]XTX} =tr(c*I) = (p+1)0°

p+1
2

N
— log 2role + ——

which is achieved by the least squares method

18



N E+1 1 N
5 log (2770,36) + % =3 (Nlogcr,z + k) -5 log 27 +
Since the second term and beyond do not depend on k, the desired result is shown.

N+1

45.

n

E[U" = [[(m+ 26 - 1))

i=1

(a) Using the Maclaurin series expansion of log(z + 1),

we get,

n .]
E[(U-m)"] = —1)/ . n=J 2(1—1
(@ =y} =317 (4 )t [T+ 26 1)
7=0 i=1
For each j, the coefficient of m™~7 Hle(m +2(i—1)) is 1 for n. Therefore, the coefficient of the nth term

=0 =0

19



(e) For each j, the coefficient of the n — 1 term of m"~J ngl(m +2(t—1))is
J
D 2i-)=jG-1
i=1

Therefore, the coefficient of the n — 1 term is

E G FTIR

n! —j—2
"L oG-V
n—2
—nn-1)Y ( " 2 ) (L1211 = n(n — 1)(—1 4 1)"2 =0
1=0

(f) For n > 3, from (d) and (e),

By setting "
= N(Z2<S) ~ X?\f—k(s)fh
72(9)
m=N—k(S) -1
we get
E {log Z] = E |log (ii?é‘?) /(N = k(S) — 1))]
=5 [os (55 =1/ 7%
=—N_k25>_1+0<12) =N N{J\ZC(—SI)G(J;)I—l} *OG?) :_lew(fVlQ)
Thus, 5 [log &2(23)} — F |log ]I{r] = log % +E {log Z}
e R RGN S

Thus, the desired result is shown.

Chapter 6 Sparse Estimation

49. 1
L=< lly— X8I + AlI3

20



50.

Differentiating with respect to 5 gives

2 2
— = ——XT(y— XB)+2)\3 = (—NXTX + 2/\I> B — NXTy

(XTX+NM)g=XTy
For a solution § = B to exist, X7 X + NI must be invertible.

Assuming A > 0, since X7 X € RP*? is non-negative definite, all eigenvalues i1, - - - , 1, of X7 X are non-negative.
Thus, the characteristic polynomial of X7 X + NI is ¢(t),

p(t) =det (XTX + NX —tI) = (t —p1 — NA) -+ (t — pp — NN

Since N > 0, all roots, i.e., eigenvalues of X7 X + NI are non-negative.
Conversely, if XTX 4+ NI is invertible, then for any i = 1,--- ,p,

wi+NA>0

Since p; is an eigenvalue of XTX and X € RN*P is arbitrary, u; can take any non-negative value. Thus, for
(49.1) to always hold, A > 0 is necessary. Therefore, the desired result is shown.

(a)
f(@) = f (xo) + 2 (& — o)
For (50.1) to hold for = > wo,

f@) = 1)
Tr — X
is necessary. For (50.1) to hold for = < z,
f@) - 1) _ |
Tr — X9

is necessary. Thus, z must be greater than or equal to the left derivative of f at x = xy and less than or
equal to the right derivative. Since f is differentiable at x = zq, z = f' (z¢) is necessary. Conversely, when
z = f"(zp), since f is a convex function, (50.1) holds. Thus, the desired result is shown.

(b) For zz < |z| to hold,
x = 0 always holds
z >0 needs z <1
z < 0 needs z > —1

Thus, for (50.2) to hold, |z| <1 is necessary. Conversely, if |z| < 1,
zr < |zf|z] < 2|
holds, so (50.2) is satisfied. Therefore, the desired result is shown.

(c) i. When z < 0, the subdifferential is {—1}
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ii. When xy = 0,
f@) > f(xo)+2(x—x0) & |z| > 22
so the subdifferential is [—1, 1].
iii. When zg > 0, the subdifferential is {1}
(d) For f(z) =22 — 3z + |z|,

22 -2 x>0
f(x){ 2 —4x <0

2r — 2, x>0
fl@)y=q22 -3+ [-1,1]=-3+[-1,1] =[-4,-2] =0
2x — 4 <0

Thus, this f(x) has a minimum at x = 1. Next, for f(z) = 2% + 2 + 2|z|,

(@) { z2 + 3z x>0,

2?—xz x<0

{ 2z 43 z >0,

Fla)y={ 2z4+1+2-1,1]=1+2[-1,1]=[-1,3], z=0

2z -1 <0
Thus, this f(x) has a minimum at z = 0.

51. Sx(z) can be written using the sign function

-1, (z<0)
sgn(z) = ¢ 0, =0
1 x>0

as
Sx(z) = sgn(z) max{|z| — A, 0}
52.
1 )
L=55 ;(yi —zif)” + AlB|

The subdifferential is

N 1 (B>0)
Zg’:—%zxi(% zi8) +AQ —1 (B<0
=1 [-1,1] (8=0)
1 (8>0)
=—yE=A+r{-1 (8 <0)
1,1 (8=0)
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Thus,

oL O0=—2z+8+A (8>0) z—A (z2>))
%:Oé O0=—24+8-X B<0)&B=92z+X1 (2<=X)
0= —2+8+A-11 (8=0) 0

Using Sx(x), we can write 8 = S (z).

55. The function cv.glmnet performs 10-fold cross-validation to determine the optimal value of A for performing
Lasso. The glmnet function takes the response variable, explanatory variables, and A\ as arguments and performs
Lasso. The selected variables are V3, V4, V5.

56. (a) Differentiating S with respect to 81 and substituting (51, 32) = (,@1, /32), we get 0 = Zivzl —2%; 1 (yi - 51331‘,1 - ngw).
Thus,

N
Z%’,l (Z/z‘ — Pixin — ﬁ2$i,2> =0
i=1

Similarly, differentiating with respect to B3, we get

N
Z%‘,z (yi — Pz — 52%,2) =0
i=1

Then,
Yi — P11 — Baxi2
=y; — Ui + Ui — Pizig — BaTio
=y; — Ui + lei,l + Bzxm — Prxi1 — BaTi2
=y; — Ui — (ﬁl - 51) i1 — (,32 - 32) T2
Moreover,

N
Ziﬂi,l (yi — Zﬂizz i —Ui) =0
i=1

Expanding the desired sum,

(ys — Brvia — Boi2)?
=30~ { (3= 2) a4 (82 = ) o}
— )+ Z {(80=B) wir + (B2~ Bo) i}
(- 31)2 St w2 (- ) (= ) Do () Lot o

i=1 i=1 i=1

] =

.
Il

I
<M2H

1=1

I
Mz

% 1

23



(b) Let A(1,0),B(0,1),C(-1,0),D(0,—1). The range of (31,32) is obtained by excluding the portions that
touch the four sides (excluding vertices) when a circle centered at (Bh Bg) and a square touch the four
sides of (31,5’2).

For the side AB, the range is the portion above AB, excluding the portion between the lines AD and BC.
Similar consideration for the other three sides gives the range of (Bl, Bg)

(¢) When the unit circle centered at the origin is considered instead of a square, the range can be written as
{(317()) ; 51‘ > 1} U {(0,32) ; ‘5’2‘ > 1}

Chapter 8 Nonlinear Regression

2

N P
57. (a) L= Z Yi — Zﬁjaﬁ For this,

i=1 7=0
" 1 x xz e xg Bo
1 =z T T
y=| : |eRY,X= . 2 erVxor) g B.l € RPH!
N o : :
Y 1 any % - ok Bp

we set L = |ly — XB||2. Therefore, 3 that minimizes L can be written as
B=(XTX)" X"y

under the assumption that X7 X is regular. Here, since rank X = rank X7 X, the condition for X7 X €

RP+DX#+1) t6 be regular is rank X = p + 1. Assuming that among z1,--- ,xy, there are p + 1 distinct
values, let them be (1), -+ ,Z(,41), and consider the matrix
1 (1) . xgl)
' S I )
L 2pyy - $1(7p+1)

From the Vandermonde inequality,

p(pt1)
det X' = (-1) = H (:L'(z) — x(])) #0
1<i<j<p+1

we see that rank X’ = p + 1, hence rank X = p + 1. Conversely, when there are p or fewer distinct values
among x1,--- ,xx, rank X < p+1, so X7 X is not regular. Therefore, the condition for Ay, 1, - - - , Bp to be
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98.

(b)

uniquely determined is that there are at least p+ 1 distinct values among z1,--- , 2. Under this condition,

the solution is )
Bo
B

b= — (x7x)"

XTy

Similarly to (a),

| R—{0}, 7=0
fi= R—R j=1, , D
N D 2
L= "\vi—>_Bifi(z:)
=1 7=0
" L fi(w)  fa(w) p (1) Bo
Y= ) cRY . x— Lo filee)  falw) - fp(22) e RVX(+) g P c RP+!
un 1 filen) falon) o folon) 8,

(fo(-) = 1) then, L = ||y — XB||*> and the 8 = 3 that minimizes L, assuming X7 X is regular, is

B=(XTX)"' X"y

The condition for XTX € RPTDx(@+1) to be regular is N > p+ 1 and the p+ 1 column vectors of X being
linearly independent.

For each i =1,--- k + 1 and the cubic polynomials f; 1, fi,

fz 1(0[1) fl (al)
f<” (i) = 1 ()
7 (an) = £D ()

holds, so
{ (@) =T)ge (m—a» |
fima(z) = ; j(r—ai)
then,
{ @) =Sigee—af™
f(x) = ijzj(j —Dej (@ — ai)J_2

= 1 () = 1) () =
ey = f1P () = £ () =2
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60.

hence, ¢; = §; (j = 0,1,2) holds. Therefore,

3
fi(z) = fim1(z) = (63 — 03) (v — o)

s0, the required ~; can be set as ; = €3 — d3. Thus, the statement is proven.

There exist K + 4 constants 31, 82, - , Bx 14 such that

K
f(x) = Br + Box + Bsz® + Paz® + Z Bjta(x — aj)i

j=1

holds, i.e., for any ¢ = 0,1,--- , K and any z € [a;, a;41],
f(x) = Br + Box + Bsx® + Byz® + Zﬂi+4 (- ai)B
j=1

holds. For i =0, in x € [ag, a1], since f(x) = fo(z), there exist unique f1, B2, 83, B4 such that
f(x) = B1+ Box + B3a” + By

so (%) holds. For i = 1, in z € [oy, ), since f1(z) = fo(z) + n (z —1)®, by setting 85 = ~1, (%)
holds. Once Sy, -, B;+4 are determined, i.e., the coefficients f1, B2, -+ , Bitaq for f(z) in x € [a, a;41] are
determined,

i1

finn(@) = fol@) + Y _ v (@ — ;)
j=1

by setting ;15 = Yit1, for ¥ € [, aital,

it1
f(@) = B1+ Boz + Bsa® + Baz® + D Bjpa(x — aj)°
j=1
holds. Hence, by considering up to ¢ = K — 1, we can determine (31, -, 8x+4 that satisfy the required
equation. Thus, the statement is proven.
3 3 3
xr — Q1 r—OoKg_9 r—OoKg_1
g(x) =m + e +73u +oe +W<g +'YK+1¥
aKg — Ooq O —OK—2 g — oK1

To show that the natural cubic spline curve g(z) becomes a straight line for > ax and that the first and
second derivatives match at the boundary = = ag,

g// (aK) — 0
is required. Therefore,
K o — K+1
1" — 6, - K 1 =6 .
g’ (ax) Zz:; Vi oK — a1 lz:; Yi

hence, 6 fogl ~; = 0, therefore,

K
VKA1 ==
Jj=3
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(b) Forj=1,---,K —1and z > ag,

soforj=1,.--- K —2,

hj+o(x) =d;j(z) — dr-1(z)

(—-a;)’ = (@—ak)’ (z—ax1)’ - (x—ax)’

O — O O — K1
He—a) —@-an)’fax —ax)  {@-ax)’ = (@ - ax)’} (ax —ay)
N (ax —aj) (ax —ax-1) - (ax —aj) (ax —ax-1)

is true. Simplifying the numerator of equation (60.1),

{@=0)’ (@ = ax)’} (o —ax) ~ {(z — ax-)’ = (¢~ ax)’} (0 — )

= (~a} + k) (ax — 1) = (s +ak) (ax — )

+ 3z {(a? — a%() (g —ag_1) — (a%{A — o@() (ax — aj)}
+32° {(—a; + ax) (ax — ax 1) — (ax — ax 1) (ax —a;)}
=— (akx —akx-1) (ax — aj) (axk-1 — aj) (aj + ax—1 + ak)
+ 3z (ax —akx—1) (ax — a;) (ax—1 — o)
=(ag —ag-1)(ak —qj) (ax-1 — ;) (37 — o — g1 — ak)
hence,
hjpa(x) = (k-1 — a;) (32 — oy — a1 — ak)

(¢) First, for any x < ag,

dj(z) =0
thus, for any = < aq,
K
g(x) =7 +7r + Z%‘ {dj—2(x) —dr—1(x)} =71 + 727
j=3
is a linear function of x. Next, for any z > ag,
K
g(x) =m + ez + Z’thj(fﬂ)
j=3
since hj(z) is at most a linear polynomial for j = 3,--- , K, g(z) is also linear. Thus, the statement is

proven.
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62. (a) For a natural cubic spline function g, ¢” (x1) = ¢” (xx) = 0 and the third derivatives being constant
(denoted ;) in each interval [z;, z;41],

/ " g @) = [ @ @] / ™ 0 ) (@) de

—0- Nz_j [ e = - NE_: 3o (@) — B ()}
(b) Under the assumption of [*~ ¢ (x)h" (z)dz,
[ @i [Ty [T e n @
[Ty wey]ase [T gan @i = [T @y + o wy] e

1 T 1

TN

> [ [ era

T
Lastly, from 60.(c), since ¢’ (z) = 0 for = ¢ [z1,2n]. Thus, the statement is proven.
(¢) For a natural cubic spline function g, if g (z;) = f (x;) for i = 1,--- | N, then setting h(x) = f(z) — g(x),
h(z;)=0for i =1,---,N. Combining this with the inequality in (b),

RSS(f,\) Z{yz— xz}m/ e }dw>Z{yz— xl}H/ {o" (@)} da

=RSS(97 A)
64. The required smoothing spline function g minimizes
N 00
RSN =3 (= £ @) 42 [ (/@) do
i=1 -

over all f: R — R. Then, the first term of RSS(g, \) is

N Y1 9(1‘1)
Y dw—g@) =\ |- :
=t YN g(zn)
Y1 g1(z1) -+ gn(71) B! ?
: S : =y -Gl
g1(zn) -+ gn(zN) YN

and the second term is

)\/ {g”(iﬂ)}2 dr = )\/ Z%g;/(x) Z’ng;/(x)dx
- T =1 j=1
N N
=1 =1

=1 j=1
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thus,
RSS(g,\) = [ly — GA|I> + MGy

Differentiating both sides by v and simplifying,
0=—-2G"(y—Gy) +2)G"y = (GTG+\G")y=GTy=y=49=(G"G+ AG”)_l GTy
Thus, the first part of the statement is proven.

67. (a) Using matrices,

N
ZK(%%‘) (i — [1,2:] B(x))?
K (z,xz1) - 0
= (y— XB(x))" : ' : (y — XB(2))
0 K (z,zN)
This can be rewritten as,
K (z,x1) - 0
W= L
0 o K(z,zN)

50, ity K (w,2) (i — [L,2:] B())” = (y — XB(2))"W'(y — XB(x)) Differentiating by 8, —2XTW'(y —
X B(x)) which equals zero, XTW'y = XTW'X 3(x) hence,

Bx) = Bz) = (XTW'X) " XTW'y

So,
K (z,z1) --- 0
W=Ww"= : ;
0 <o K (z,zN)
W is a diagonal matrix with K (x,21),---, K (z,zy) as its diagonal elements.

Chapter 9 Support Vector Machines

75. (a)
e =0 if it is on the correct margin or not,
0 <e <1 ifitis between the margin and the boundary,
€ =1 if it is on the boundary,
€ >1 if it is on the opposite side of the boundary.

(b) Suppose there exists a solution M > 0 such that for at least r different ¢ € {1,--- ,n}, v;(Bo + z:;8) < 0.
For each such 1,

yi(Bo + i) > M(1 — ¢;)
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implies €; > 1, and thus Zf\;l € > 1. If v <r, then

which is a contradiction.

(¢) For some v = ~p, let (8, Bo, €;) maximize M to My. For v = 1 > 7, the conditions are still satisfied, and
the optimal value of M is at least M.

76. Consider (8.24). If there exists an index j € {1,--- ,m} such that f;(8) > 0, we can increase the value of a; to
make L(«, B) arbitrarily large. On the other hand, if f;(8) <O forall j € {1,--- ,m}, setting oy =+ = @, =0
gives the maximum value of L(«, ) as fo(8). Thus, (8.24) is proven. Next, for any « € [0,00)™, 5 € RP,

sup L(o, §) > L{e, ) > inf L(a, §)

a’>0

which implies

sup L(o/, 3) > inf L(a, )

a’>0 B’
for any « € [0,00)™, 8 € RP. This inequality holds even when taking inf over § on the left and sup over « on
the right, implying (8.25). Now,

(p,m) = (2,1)
L(a, B) = B1+ Ba +a(B7 + 55 — 1)
Thus,
fo(B) = B1+ B2
f1(B) =BT+ 55 -1
o] =«
From (8.24),
) B+ B i BE4BE-1<0
Z‘é%L(a’ﬁ)_{oo if 2 4+63—-1>0

This is minimized at 8; = B2 = —1/4/2, giving the minimum value —/2. Hence, the left side of (8.25) is —v/2.
Next,

oL _ oL _
9B1 OB
yields
]. + 20&61 = 0
1+ 20éﬂ2 =0

implying 81 = B2 = —1/(2«). Thus,

2 2
1 1 1 1 1 1
inf L =—— - — - — ) -l =———a=-— —
1% (@, 5) 200 20¢+a{( 2a> * ( 2a> } 2 @ (a+2a>
The maximum value of this is —v/2 for a = —1/v/2. Thus, equality holds in (8.25).
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77. (a) From (8.30), let (f,zo,x) — (fo, 8%, B):
fo(B) < fo(B) =V fo(B")T (B - B%)

+2041va ﬂ B* )

m

< fo(B +Zaz{fz fi(8%)}

:fO +Zazfz <f0

where ; > 0 and f;(8) <O0fori=1,---,m.
(b) For (8.26):
fo(B) = B1 + B2,
f(B) =57+ B3 -1
Thus, (8.27), (8.28), (8.29) become

B2+ p2-1<0,
aff+53—1)=0,

(1)+=(52)=(0)

yi(Bo +xiB) — (1 =€) >0,
€; Z 0

78. First, from (8.27), fori=1,---, N,

Next, from (8.28), fori=1,--- , N,

ai{yi(Bo +ziB) — (1 —€)} =0,
pi€; =0
9Lr —
{ gﬁ - O’

{ Zi\; oy = 0,

and from (8.29),

yields

/B_vazl aiyisz 207
C—ai—p=0

79. By optimizing Lp with respect to o, 8, from (8.32) and (8.34), Lp is written as:

7“5”2"_2 C - ,uz_az 61"‘2041 Zazyz BO"’xzﬂ 7”6”2"'20‘2 Zazyz B

=1 =1
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80.

81.

Using (8.33),

1 A T /N L XN
5”3“% = 5 (Z OéiyimiT> (Z 0411/#?) = ) Z Z OéiOéjyz‘yjﬂﬁi%T7
i=1 i=1 i=1j=1
N N N N N
- Z oy = — Z QYT Z ajyﬂjT = - Z Z aiOéjyiyjfUﬂjT
i=1 i=1 j=1 i=1 j=1

Thus, we can construct the function Lp with Lagrange multipliers a;, u; > 0,i=1,---

N 1 N N
Lo =Y o= 33 yee]
i=1

i=1 j=1

Given (8.32) and (8.34),

0<q;<C (i=1,---,N)
Zi]\ilaiyizo

By solving this dual problem, we obtain «;,i =1,--- ;N which gives 8 by substituting into (8.33).

(a)

Yi(Bo+xiff) > 1= yi(Bo+xi8) — (1 —€) >0=0a; =0,
0<a;<C=p>0=yBo+x0)—(1l—€)=0=¢ =0,
yi(50+$iﬁ)<1:>€i>0:>/1,i:0:>a7;20

When ag = -+ = ay = 0, from (8.33), § = 0. From (8.34) and (8.36), ¢ = ---

yi(Bo +x;8) =1foralli=1,---, N,
Yibo=1>0

Since y; € {—1,1}, y1 = --- = yn is necessary. Thus, for all i =1,--- , N, (y;, 5o)
Hence, the statement is proven.

If o; = C implies €¢; > 0 and «; = 0 implies €; = 0, then,

€= min ¢ >0
i=1, ,N

By replacing each ¢; with €; — €, and Sy with By + y;€x,
Yi(Bo + yiex + :8) = yi(Bo + i) + €«

S0
yi(Bo+x:8) — (1 —€) =yi(Bo+ i) + ex — (1 — € + €x)

= ey = 0. Assuming

= (£1,+1) (same sign).

This does not change the value. Considering (8.37) with the contrapositive of the third proposition of 80,
equality holds in (8.37) for both cases a; = 0, C. Therefore, all seven KKT conditions hold. After replacing,

N N

&Y (C—m)=eY a;>0

=1 i=1

is reduced, which is not an optimal solution for Lp.
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(c) From (a) and (b) and the proposition 80, there exists at least one index ¢ such that 0 < a; < C or
yi(Bo + x;8) = 1. In the former case, from the two propositions of 80, y;(8o + ;) = 1 holds. Hence, the
statement is proven.

82.
N N N
1 T
Lp = E @i—g E E QLYY T
i=1 i=1 j=1
can be rewritten as
vec

1
Lp = fiaTDmata +dL

with the constraints
Amata > byec

where
byec = [07_07"' ,—C,O,-'- aO]T eRm’ Amat ERmXNa meq €N, Dyat ERNXNy dyec ERN
Setting
11y - T1,pY1
y = : - : c RVxp
ITN,1YN °* IN,pYN
and
[ Yyir - YN ]
-1
m = 2N + ]-a Amat = 1 ) _1 6 R(2N+1)XN, meq = 1; Dmat = ZZT7 d’Uec = [17 e 71]T
. 1 -

we obtain the same dual problem.

83.
K(z,y) = (1+a2"y)?

= (14 2191 + 22y2)*
=1+ 2z + 222y + 7Y + 201220192 + T5Y5

T
= 1,\/5961,\/5:62,:16?,\/5:61362,:63} {l,ﬁy1,\/§y27y%’,\/§y1yz,y§

Thus, the mapping ¢ is
(xlaxQ) = (1; \/5-’1)1, \/5.’1727.'13%, \/5331552’1'%)

84. (a) For any f,g,h € V and «, 8 € R,
1
(9) = | @)z
0
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defines the inner product:
1
/ f@g(a)ds = [ gla)fla)de = (5. 5)
0
1
(@ + 800 = [ Has@) + soenn@te = [ @+ 5 [ gt = alrm + oa.)
0 0
1
(f, = / {f(x)}*dx > 0 (equality holds if and only if f = 0)
0

Thus, (-,-) is an inner product on V.

(b) For any x,y € R, let (z,y) = (1 4+ 27y)2. Then,

<O-.’L‘7y>:12:175020-<$,y>

which shows (-, -) is not linear and thus not an inner product on V.

Chapter 10 Unsupervised Learning

90. (a) Foreachj=1,---p,

T i — Tyt —22 Tii— X
DI WCIES

1€CL ' €C i€Cy

It is sufficient to show the above. For the left-hand side of (90.1),

AR e

1€Cy i €C
|C’ ‘ Z Z Tij — Thj+ Tj — T J)
k 1€Cr t'€C
> D iy —aky)’ DD (Fry—aiy)’ DD (@i —Try) (B — w0 )
|Ck‘ 1€Cl i €Cy, |C lzeCkz 'eCl |C ‘ZECkZECk

The first and second terms are equal, and the third term is zero. Thus,

=22
|Ck| > D (wig —wy) |Ck| > D (wig—Tky) Tiyg — Ty)”

1€C i €Cy, 1€C i €Cy, 1€Cl,

The right-hand side matches the right-hand side of (90.1). Therefore, the desired equality is proven.

(b) From (a), the score S can be written as:

K P K
=23 3 (@i —wky) =2 > e — 3l

k=1ieC) j=1 k=1ieCy
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In this case, for each k =1, --- | K and any vector x,

Dol =l =Y @i - z) — (@ — @)

1€Cl, 1€Cy

= >l =@l + Y e -zl -2 —2)" D (@ — 3)
1€Cy 1€Cy, 1€Cy,

=3 =zl + Y e =zl < Y e — @l
1€Cl 1€Cl 1€Cl,

This shows that even taking two steps does not increase the score S.

(c) First, in the first case, 3 and 10 are the centers of clusters 1 and 2 respectively. The nearest cluster centers
for 0, 6, and 10 are 3, 3, and 10 respectively, and continuing the process will not change this state. The
score S in this case is:

§=3"+340"=18

In the second case, 0 and 8 are the centers of clusters 1 and 2 respectively. The nearest cluster centers for
0, 6, and 10 are 0, 8, and 8 respectively, and continuing the process will not change this state. The score S
in this case is:

S=0*+22+22=38

93. When applying Centroid Linkage, initially (5,8) and (9,0) are combined, and the cluster distance is v/42 + 82 = 80.
At this point, the center is (7,4), and the distance between this and the other center (0,0) is V72 + 42 = /65.
Since this distance is smaller than the initial cluster distance, the dendrogram tree intersects.

94. (a) Under the condition that ||¢||?> = 1, consider maximizing || X ¢||?. The KKT condition gives:
L=X¢l* =~ (lgl* - 1)
Taking the derivatives OL/0y = 0 and OL/Jd¢ = 0, we obtain:
XTX¢=r¢
Thus, ¢ must be an eigenvector of X7 X and therefore of X:
IXg]* = 6" X" X6 = 6" XT X6 =797 ¢ =||¢]* =~
The maximum 7 is the largest eigenvalue of X7 X. Thus, ¢ = ¢; is the eigenvector corresponding to A; of

Y., satisfying:
Y1 =M1

(b) Vectors belonging to different eigenspaces of a symmetric matrix are orthogonal. Since all eigenvalues are
distinct, each eigenspace has dimension 1, and the eigenvectors are orthogonal.
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97.

i — 2,007 = szn +, ;vfI><I>T:c<I><I>T —2 z; (2,007
ZH )

Z @) = ZZ (i;)”

|xl|| —Zx@qﬁ 2, ®®T)"

=1

i=1 j=1 j=11i=1

SES -3

i=1

lelel —ZMMT T—lelel —ZIIWI’H

2

= [IXg;
j=1

1‘1¢]

m

xN¢j
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